Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276558

RESUMO

Cow's milk (CM) is a healthy food consumed worldwide by individuals of all ages. Unfortunately, "lactase-deficient" individuals cannot digest milk's main carbohydrate, lactose, depriving themselves of highly beneficial milk proteins like casein, lactoalbumin, and lactoglobulin due to lactose intolerance (LI), while other individuals develop allergies specifically against these proteins (CMPA). The management of these conditions differs, and an inappropriate diagnosis or treatment may have significant implications for the patients, especially if they are infants or very young children, resulting in unnecessary dietary restrictions or avoidable adverse reactions. Omics technologies play a pivotal role in elucidating the intricate interactions between nutrients and the human body, spanning from genetic factors to the microbiota profile and metabolites. This comprehensive approach enables the precise delineation and identification of distinct cohorts of individuals with specific dietary requirements, so that tailored nutrition strategies can be developed. This is what is called personalized nutrition or precision nutrition (PN), the area of nutrition that focuses on the effects of nutrients on the genome, proteome, and metabolome, promoting well-being and health, preventing diseases, reducing chronic disease incidence, and increasing life expectancy. Here, we report the opinion of the scientific community proposing to replace the "one size fits all" approach with tailor-made nutrition programs, designed by integrating nutrigenomic data together with clinical parameters and microbiota profiles, taking into account the individual lactose tolerance threshold and needs in terms of specific nutrients intake. This customized approach could help LI patients to improve their quality of life, overcoming depression or anxiety often resulting from the individual perception of this condition as different from a normal state.


Assuntos
Intolerância à Lactose , Hipersensibilidade a Leite , Lactente , Criança , Animais , Bovinos , Feminino , Humanos , Pré-Escolar , Intolerância à Lactose/genética , Intolerância à Lactose/diagnóstico , Leite , Hipersensibilidade a Leite/diagnóstico , Lactose , Qualidade de Vida , Proteínas do Leite/efeitos adversos
2.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067161

RESUMO

Origanum vulgare L. is an aromatic plant that exerts antibacterial, antioxidant, anti-inflammatory, and antitumor activities, mainly due to its essential oil (EO) content. In this study, we investigated the possible mechanism underlying the in vitro antitumor activity of EO extracted by hydrodistillation of dried flowers and leaves of Origanum vulgare L. grown in Sicily (Italy) in MDA-MB-231 and MCF-7 breast cancer cell lines. Gas chromatography-mass spectrometry analysis of Oregano essential oil (OEO) composition highlighted the presence of twenty-six major phytocompounds, such as p-cymene, γ-terpinene, and thymoquinone p-acetanisole. OEO possesses strong antioxidant capacity, as demonstrated by the DPPH test. Our studies provided evidence that OEO reduces the viability of both MCF-7 and MDA-MB-231 cells. The cytotoxic effect of OEO on breast cancer cells was partially counteracted by the addition of z-VAD-fmk, a general caspase inhibitor. Caspases and mitochondrial dysfunction appeared to be involved in the OEO-induced death mechanism. Western blotting analysis showed that OEO-induced activation of pro-caspases-9 and -3 and fragmentation of PARP decreased the levels of Bcl-2 and Bcl-xL while increasing those of Bax and VDAC. In addition, fluorescence microscopy and cytofluorimetric analysis showed that OEO induces a loss of mitochondrial membrane potential in both cell lines. Furthermore, we tested the effects of p-cymene, γ-terpinene, thymoquinone, and p-acetanisole, which are the main components of OEO. Our findings highlighted that the effect of OEO on MDA-MB-231 and MCF-7 cells appears to be mainly due to the combination of different constituents of OEO, providing evidence of the potential use of OEO for breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Óleos Voláteis , Origanum , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Antioxidantes/análise , Neoplasias da Mama/patologia , Caspases
3.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834065

RESUMO

Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.


Assuntos
Doenças Inflamatórias Intestinais , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Espécies Reativas de Oxigênio , Disbiose/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Inflamação/genética , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
4.
Cancers (Basel) ; 15(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37894464

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is the second most common cancer among head and neck cancers. Despite a lower incidence of laryngeal carcinoma, new diagnostic techniques, and more targeted therapies, the overall survival has not changed significantly in the last decades, leading to a negative prognosis in advanced stages. Recently, several studies have focused on the identification of biomarkers that may play a critical role in the pathogenesis of LSCC. Reviewing the literature on the main databases, this study aims to investigate the role of some biomarkers in LSCC that are correlated with oxidative stress and inflammation: heat shock proteins; metallothioneins; nuclear factor erythroid 2-related factor 2; heme oxygenase; cyclooxygenase-2; and micro ribonucleic acids. This review shows that biomarker expression depends on the type, grade of differentiation, stage, and site of carcinoma. In addition, the role of these biomarkers in LSCC is still little-known and little-studied. However, the study of biomarker expression and the detection of a possible correlation with patients' epidemiological, clinicopathological, and therapeutics data may lead to better awareness and knowledge of the tumor, to the identification of the best therapeutic strategy, and the most proper follow-up protocol tailored for each patient. In conclusion, the achievement of these goals may improve the prognosis of LSCC patients.

5.
Front Nutr ; 10: 1221013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727633

RESUMO

Introduction: Nonalcoholic fatty liver disease (NAFLD), characterized by lipid accumulation within hepatocytes exceeding 5% of liver weight, is strongly related to metabolic disorders, obesity, and diabetes and represents a health emergency worldwide. There is no standard therapy available for NAFLD. Lifestyle intervention, including phytonutrient intake, is key in preventing NAFLD development and progression. Methods: We used a rat model of NAFLD to evaluate the effect of dietary supplementation with red tomato (RT) and golden tomato (GT)-a patented mix of fruit with varying degrees of ripeness and particularly rich in naringenin and chlorogenic acid-after steatosis development. We assessed the effects on body weight, metabolic profile, and hepatic steatosis. Results and discussion: We found a correlation between the amelioration of all the parameters and the liver gene expression. Our results showed that, together with the reversion of steatosis, the consumption of RT and GT can cause a significant reduction in triglycerides, low-density lipoprotein-cholesterol, fasting glucose, and homeostasis model assessment index. Meanwhile, we observed an increase in high-density lipoprotein-cholesterol according to the amelioration of the general lipidic profile. Regarding hepatic gene expression, we found the upregulation of Gk and Hnf4α involved in metabolic homeostasis, Lepr involved in adipokine signaling, and Il6 and Tnf involved in inflammatory response. Taken together, our results suggest that dietary intake of red and golden tomatoes, as a nutraceutical approach, has potential in preventing and therapeutics of NAFLD.

6.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446326

RESUMO

Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial-Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-κB, and GSK3ß-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC.


Assuntos
Células MDA-MB-231 , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proteína de Sequência 1 de Leucemia de Células Mieloides , Anoikis , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento Celular
7.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298104

RESUMO

Oncogenic BRAF mutations have been widely described in melanomas and promote tumour progression and chemoresistance. We previously provided evidence that the HDAC inhibitor ITF2357 (Givinostat) targets oncogenic BRAF in SK-MEL-28 and A375 melanoma cells. Here, we show that oncogenic BRAF localises to the nucleus of these cells, and the compound decreases BRAF levels in both the nuclear and cytosolic compartments. Although mutations in the tumour suppressor p53 gene are not equally frequent in melanomas compared to BRAF, the functional impairment of the p53 pathway may also contribute to melanoma development and aggressiveness. To understand whether oncogenic BRAF and p53 may cooperate, a possible interplay was considered in the two cell lines displaying a different p53 status, being p53 mutated into an oncogenic form in SK-MEL-28 and wild-type in A375 cells. Immunoprecipitation revealed that BRAF seems to preferentially interact with oncogenic p53. Interestingly, ITF2357 not only reduced BRAF levels but also oncogenic p53 levels in SK-MEL-28 cells. ITF2357 also targeted BRAF in A375 cells but not wild-type p53, which increased, most likely favouring apoptosis. Silencing experiments confirmed that the response to ITF2357 in BRAF-mutated cells depends on p53 status, thus providing a rationale for melanoma-targeted therapy.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mutação , Linhagem Celular Tumoral
8.
Antioxidants (Basel) ; 12(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372022

RESUMO

Methyl gallate (MG), which is a gallotannin widely found in plants, is a polyphenol used in traditional Chinese phytotherapy to alleviate several cancer symptoms. Our studies provided evidence that MG is capable of reducing the viability of HCT116 colon cancer cells, while it was found to be ineffective on differentiated Caco-2 cells, which is a model of polarized colon cells. In the first phase of treatment, MG promoted both early ROS generation and endoplasmic reticulum (ER) stress, sustained by elevated PERK, Grp78 and CHOP expression levels, as well as an upregulation in intracellular calcium content. Such events were accompanied by an autophagic process (16-24 h), where prolonging the time (48 h) of MG exposure led to cellular homeostasis collapse and apoptotic cell death with DNA fragmentation and p53 and γH2Ax activation. Our data demonstrated that a crucial role in the MG-induced mechanism is played by p53. Its level, which increased precociously (4 h) in MG-treated cells, was tightly intertwined with oxidative injury. Indeed, the addition of N-acetylcysteine (NAC), which is a ROS scavenger, counteracted the p53 increase, as well as the MG effect on cell viability. Moreover, MG promoted p53 accumulation into the nucleus and its inhibition by pifithrin-α (PFT-α), which is a negative modulator of p53 transcriptional activity, enhanced autophagy, increased the LC3-II level and inhibited apoptotic cell death. These findings provide new clues to the potential action of MG as a possible anti-tumor phytomolecule for colon cancer treatment.

9.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982490

RESUMO

A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity.


Assuntos
Mangifera , Humanos , Camundongos , Animais , Palmitatos/toxicidade , Palmitatos/metabolismo , Células 3T3-L1 , Espécies Reativas de Oxigênio/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Adipogenia , Hipertrofia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo
10.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770927

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease worldwide. Curcumin and andrographolide are famous for improving hepatic functions, being able to reverse oxidative stress and release pro-inflammatory cytokines, and they are implicated in hepatic stellate cell activation and in liver fibrosis development. Thus, we tested curcumin and andrographolide separately and in combination to determine their effect on triglyceride accumulation and ROS production, identifying the differential expression of genes involved in fatty liver and oxidative stress development. In vitro steatosis was induced in HepG2 cells and the protective effect of curcumin, andrographolide, and their combination was observed evaluating cell viability, lipid and triglyceride content, ROS levels, and microarray differential gene expression. Curcumin, andrographolide, and their association were effective in reducing steatosis, triglyceride content, and ROS stress, downregulating the genes involved in lipid accumulation. Moreover, the treatments were able to protect the cytotoxic effect of steatosis, promoting the expression of survival and anti-inflammatory genes. The present study showed that the association of curcumin and andrographolide could be used as a therapeutic approach to counter high lipid content and ROS levels in steatosis liver, avoiding the possible hepatotoxic effect of curcumin. Furthermore, this study improved our understanding of the antisteatosis and hepatoprotective properties of a curcumin and andrographolide combination.


Assuntos
Curcumina , Hepatopatia Gordurosa não Alcoólica , Humanos , Células Hep G2 , Curcumina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/genética , Triglicerídeos/metabolismo , Fígado
11.
Biomedicines ; 10(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009541

RESUMO

Histone deacetylase inhibitors (HDACI) are epigenetic compounds that have been widely considered very promising antitumor agents. Here, we focus on the effects of the pan-HDAC inhibitor ITF2357 (Givinostat) in comparison with SAHA (Vorinostat) in melanoma cells bearing BRAF V600E oncogenic mutation. Our results indicate both ITF2357 and SAHA dose-dependently reduce the viability of BRAF-mutated SK-MEL-28 and A375 melanoma cells. The comparison of IC50 values revealed that ITF2357 was much more effective than SAHA. Interestingly, both inhibitors markedly decreased oncogenic BRAF protein expression levels, ITF2357 being the most effective compound. Moreover, the BRAF decrease induced by ITF2357 was accompanied by a decrease in the level of phospho-ERK1/2. The inhibitor of upstream MEK activity, U0126, reduced ERK1/2 phosphorylation and dramatically potentiated the antitumor effect of ITF2357, exacerbating the reduction in the BRAF level. ITF2357 stimulated an early pro-survival autophagic response, which was followed by apoptosis, as indicated by apoptotic markers evaluation and the protective effects exerted by the pan-caspase inhibitor z-VADfmk. Overall, our data indicate for the first time that ITF2357 targets oncogenic BRAF in melanoma cells and induces a switch from autophagy to classic apoptosis, thus representing a possible candidate in melanoma targeted therapy.

12.
Biomedicines ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203723

RESUMO

Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.

13.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204243

RESUMO

Several studies highlighted the beneficial value of natural compounds in the prevention and treatment of obesity. Here, we investigated the anti-obesity effects of extracts of peel and seed of mango (Mangifera indica L.) cultivated in Sicily (Italy) in 3T3-L1 cells. Mango Peel (MPE) and Mango Seed (MSE) extracts at a 100 µg/mL concentration significantly reduced lipid accumulation and triacylglycerol contents during 3T3-L1 adipocyte differentiation without toxicity. HPLC-ESI-MS analysis showed that both the extracts contain some polyphenolic compounds that can account for the observed biological effects. The anti-adipogenic effect of MPE and MSE was the result of down-regulation of the key adipogenic transcription factor PPARγ and its downstream targets FABP4/aP2, GLUT4 and Adipsin, as well SREBP-1c, a transcription factor which promotes lipogenesis. In addition, both MPE and MSE significantly activated AMPK with the consequent inhibition of Acetyl-CoA-carboxylase (ACC) and up-regulated PPARα. The addition of compound C, a specific AMPK inhibitor, reduced the effects of MPE and MSE on AMPK and ACC phosphorylation, suggesting a role of AMPK in mediating MPE and MSE anti-lipogenic effects. Notably, MPE and MSE possess an elevated radical scavenging activity, as demonstrated by DPPH radical scavenging assay, and reduced ROS content produced during adipocyte differentiation. This last effect could be a consequence of the increase in the antioxidant factors Nrf2, MnSOD and HO-1. In conclusion, MPE and MSE possesses both anti-adipogenic and antioxidant potential, thus suggesting that the bio-waste products of mango are promising anti-obesity natural compounds.

14.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769261

RESUMO

Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a medical problem and represents an important risk factor for the development of serious diseases such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one's lifestyle, the reduction of body mass can be promoted by different natural compounds such as essential oils (EOs). EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes, ketones, and esters. Thanks to the characteristics of the various chemical components present in them, EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies and, in this review, we summarize the effect of EOs in obesity and obesity-related metabolic diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Obesidade/tratamento farmacológico , Óleos Voláteis/uso terapêutico , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Resistência à Insulina , Neoplasias/etiologia , Neoplasias/prevenção & controle , Obesidade/complicações
15.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360732

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known transcription factor best recognised as one of the main regulators of the oxidative stress response. Beyond playing a crucial role in cell defence by transactivating cytoprotective genes encoding antioxidant and detoxifying enzymes, Nrf2 is also implicated in a wide network regulating anti-inflammatory response and metabolic reprogramming. Such a broad spectrum of actions renders the factor a key regulator of cell fate and a strategic player in the control of cell transformation and response to viral infections. The Nrf2 protective roles in normal cells account for its anti-tumour and anti-viral functions. However, Nrf2 overstimulation often occurs in tumour cells and a complex correlation of Nrf2 with cancer initiation and progression has been widely described. Therefore, if on one hand, Nrf2 has a dual role in cancer, on the other hand, the factor seems to display a univocal function in preventing inflammation and cytokine storm that occur under viral infections, specifically in coronavirus disease 19 (COVID-19). In such a variegate context, the present review aims to dissect the roles of Nrf2 in both cancer and COVID-19, two widespread diseases that represent a cause of major concern today. In particular, the review describes the molecular aspects of Nrf2 signalling in both pathological situations and the most recent findings about the advantages of Nrf2 inhibition or activation as possible strategies for cancer and COVID-19 treatment respectively.


Assuntos
COVID-19/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/química , Neoplasias/tratamento farmacológico , Transdução de Sinais , Tratamento Farmacológico da COVID-19
16.
Molecules ; 26(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299603

RESUMO

Today, an improved understanding of cancer cell response to cellular stress has become more necessary. Indeed, targeting the intracellular pro-oxidant/antioxidant balance triggering the tumor commitment to cell demise could represent an advantageous strategy to develop cancer-tailored therapies. In this scenario, the present study shows how the peel extract of mango-a tropical fruit rich in phytochemicals with nutraceutical properties-can affect the cell viability of three colon cancer cell lines (HT29, Caco-2 and HCT116), inducing an imbalance of cellular redox responses. By using hydro-alcoholic mango peel extract (MPE), we observed a consistent decline in thiol group content, which was accompanied by upregulation of MnSOD-a mitochondrial scavenger enzyme that modulates the cellular response against oxidative damage. Such an effect was the consequence of an early production of mitochondrial superoxide anions that appeared after just 30 min of exposure of colon cancer cells to MPE. The effect was accompanied by mitochondrial injury, consisting of the dissipation of mitochondrial membrane potential and a decrease in the level of proteins localized in the mitochondrial membrane-such as voltage-dependent anion-selective channel (VDAC1), mitofilin, and some members of Bcl-2 family proteins (Mcl-1, Bcl-2 and Bcl-XL)-with the mitochondrial release of apoptogenic factors (cytochrome C and AIF). The analysis of the cytotoxic effects exerted by the different constituents of MPE (gallic acid, mangiferin, citric acid, quinic acid, pentagalloyl glucose, and methyl gallate) allowed us to identify those phytochemicals responsible for the observed anticancer effects, sustaining their future employment as chemopreventive or therapeutic agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Mangifera , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Mangifera/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química
17.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143349

RESUMO

Organotin compounds represent potential cancer therapeutics due to their pro-apoptotic action. We recently synthesized the novel organotin ferulic acid derivative tributyltin (IV) ferulate (TBT-F) and demonstrated that it displays anti-tumor properties in colon cancer cells related with autophagic cell death. The purpose of the present study was to elucidate the mechanism of TBT-F action in colon cancer cells. We specifically show that TBT-F-dependent autophagy is determined by a rapid generation of reactive oxygen species (ROS) and correlated with endoplasmic reticulum (ER) stress. TBT-F evoked nuclear factor erythroid-2 related factor 2 (Nrf2)-mediated antioxidant response and Nrf2 silencing by RNA interference markedly increased the anti-tumor efficacy of the compound. Moreover, as a consequence of ROS production, TBT-F increased the levels of glucose regulated protein 78 (Grp78) and C/EBP homologous protein (CHOP), two ER stress markers. Interestingly, Grp78 silencing produced significant decreasing effects on the levels of the autophagic proteins p62 and LC3-II, while only p62 decreased in CHOP-silenced cells. Taken together, these results indicate that ROS-dependent ER stress and autophagy play a major role in the TBT-F action mechanism in colon cancer cells and open a new perspective to consider the compound as a potential candidate for colon cancer treatment.


Assuntos
Autofagia , Neoplasias do Colo/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Trialquitina/farmacologia , Apoptose , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/genética , Células Tumorais Cultivadas
18.
Healthcare (Basel) ; 8(4)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066519

RESUMO

A lifelong adherence to a gluten-free (GF) diet is currently the only treatment for Celiac disease (CD), an autoimmune disorder that arises after gluten ingestion in individuals who are genetically predisposed. The gluten intake exerts toxic effects through several pathways involving gut barrier integrity, intestinal microbiota composition and immune system stimulation. However, despite the great benefit of GF diet for CD patients, its use has been debated. Indeed, individuals who adopt this diet regime may be at risk of nutrient deficiencies. Emerging evidence supports a beneficial effect of a GF diet also for other pathological conditions, including gluten-related disorders (GRD) often associated to CD, such as Non celiac gluten sensitivity (NCGS) and Dermatitis Herpetiforme (DH) as well as Irritable bowel syndrome (IBS) and Diabetes. This suggests a pathogenic role of gluten in these conditions. Despite the growing popularity of GF diet among consumers, to date, there are limited evidences supporting its use for the management of non-celiac diseases. Therefore, in this review, we discuss whether the GF diet could really improve the general quality of life of patients with GRD and non-GRD conditions, keeping in mind its sensorial limitations and nutritional inadequacies. In addition, we discuss the current motivations, leading to the use of a GF diet, despite the inferior quality of GF products respect to those containing gluten.

19.
Cell Stress Chaperones ; 25(6): 805-820, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32856199

RESUMO

Fatty acid-binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational modifications and can be pathogenic. We have assembled the disorders with abnormal FABPs as chaperonopathies in a distinct nosological entity. This entity is similar but separate from that encompassing the chaperonopathies pertaining to protein chaperones. In this review, we discuss the role of FABPs in the pathogenesis of metabolic syndrome, cancer, and neurological diseases. We highlight the opportunities for improving diagnosis and treatment that open by encompassing all these pathological conditions within of a coherent nosological group, focusing on abnormal lipid chaperones as biomarkers of disease and etiological-pathogenic factors.


Assuntos
Pesquisa Biomédica , Doença , Lipídeos/química , Chaperonas Moleculares/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Modelos Biológicos
20.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708719

RESUMO

p62 is a versatile protein involved in the delicate balance between cell death and survival, which is fundamental for cell fate decision in the context of both cancer and neurodegenerative diseases. As an autophagy adaptor, p62 recognizes polyubiquitin chains and interacts with LC3, thereby targeting the selected cargo to the autophagosome with consequent autophagic degradation. Beside this function, p62 behaves as an interactive hub in multiple signalling including those mediated by Nrf2, NF-κB, caspase-8, and mTORC1. The protein is thus crucial for the control of oxidative stress, inflammation and cell survival, apoptosis, and metabolic reprogramming, respectively. As a multifunctional protein, p62 falls into the category of those factors that can exert opposite roles in the cells. Chronic p62 accumulation was found in many types of tumors as well as in stress granules present in different forms of neurodegenerative diseases. However, the protein seems to have a Janus behaviour since it may also serve protective functions against tumorigenesis or neurodegeneration. This review describes the diversified roles of p62 through its multiple domains and interactors and specifically focuses on its oncoJanus and neuroJanus roles.


Assuntos
Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Apoptose , Autofagia , Humanos , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA